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Abstract

Optimization of the refrigerant circuit (RC) of a fin-and-tube heat exchanger can increase its heat exchange capacity or decrease its cost. The
genetic algorithm is one of the suitable optimization methods, however it needs to be improved for RC optimization of fin-and-tube heat exchang-
ers. An improved genetic algorithm (IGA) is proposed for RC optimization. In the IGA, the RC solutions are represented by one-dimensional
integer strings which can save both computer memory and decoding time. RC correction operators are developed and embedded in the entire
genetic process with the goal of avoiding physically impossible solutions. The knowledge-based RC generation method, greedy RC crossover
method, greedy RC mutation method and all-previous-population based selection method are developed in order to improve the efficiency of the
genetic evolution process for RC optimization. Case studies with 3 different heat exchangers show that both the optimization speed and the quality
of the output optimal solution of IGA are better than those of the conventional genetic algorithm. A 0–40% decrease in total length of joint tubes
is obtained after optimization with the IGA with the target of obtaining the shortest joint tubes. In addition, a 2.8–7.4% increase in heat exchange
capacity is obtained after IGA optimization with the target of maximum heat transfer.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Fin-and-tube heat exchangers are widely applied as evapo-
rators and condensers in refrigeration systems. Cost reduction
and capacity maximization are the two major targets of opti-
mization for such heat exchangers. Shortest tubes are expected
in practical design of the heat exchangers in order to reduce the
cost. Changing RC (Refrigerant Circuit) for heat exchanger op-
timization is more convenient and is cost saving compared with
other optimization methods of changing the overall dimensions
or fin and tube geometries [1,2], because the latter optimization
methods [1,2] are confined by many factors, such as installa-
tion space, manufacture facilities, etc. It has been proved that
RC has significant effect on heat exchanger performance [3–5],
and the optimal RC for one refrigerant is different from that for
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another refrigerant [4,7,8]. Wang et al. [3] experimentally stud-
ied eight air-cooled condensers including six 1-circuit and two
2-circuit arrangements, and found that counter-cross flow gave
better performance than other arrangements. Liang et al. [5] an-
alyzed six refrigerant circuits by using their verified model, and
found that suitable refrigerant circuit arrangements might re-
duce the heat transfer area by around 5% in coil design. Only
limited number of RCs can be investigated by manual exper-
imental analysis method [3,4] or manual numerical analysis
method [5,6], and the optimization results from such methods
may also be limited. RC optimization programs can help finding
the optimal RC solutions as well as reducing the development
time and cost since it uses computer to do the optimization au-
tomatically.

Suitable optimization methods for RC optimization need to
be developed considering the complexity of the RC optimiza-
tion. Many factors should be considered simultaneously to de-
sign an optimal RC, such as the number and positions of the
inlets and outlets, the number and positions of the inner con-
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Nomenclature

Ao total airside surface area . . . . . . . . . . . . . . . . . . . . m2

Ai tube inside surface area . . . . . . . . . . . . . . . . . . . . m2

C1, C2 constant numbers
F(j) fitness value of No. j individual
G mass flux . . . . . . . . . . . . . . . . . . . . . . . . . kg m−2 s−1

h specific enthalpy . . . . . . . . . . . . . . . . . . . . . . kJ kg−1

L total length of joint tubes . . . . . . . . . . . . . . . . . . . . m
Lb length of single joint tube on the backside of the

heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ladj maximum length of single joint tube between two

adjacent tubes of same row or adjacent rows . . . m
Lr reference total length of joint tubes . . . . . . . . . . . m
Lx−y joint tube length between tubes #x and #y . . . . m
m inlet path number or outlet path number
M mass flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . kg s−1

N total tube number in the heat exchanger
OA offspring individual A

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kPa
PA parent individual A

PB parent individual B

Q heat exchange capacity . . . . . . . . . . . . . . . . . . . . . W
Q0 minimum heat exchange capacity . . . . . . . . . . . . W
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
X the variable or integer string for representing RC

X[i] the ith element in X

Greek symbols

α heat transfer coefficient . . . . . . . . . . . kW m−2 K−1

δ weight factor
�p pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
η0 fin surface efficiency

Subscripts

a air
acc acceleration
f friction
in inlet
out outlet
r refrigerant
wall tube wall

Abbreviations

APPSM all-previous-population based selection method
CPSM current-population-based selection method
GA genetic algorithm
IGA improved genetic algorithm
RC refrigerant circuit
SGA standard genetic algorithm
*** undetermined part in X
fluent/divergent points, etc. It is difficult to deduce rules, such
as the gradient equations, to directly guide the optimization
process. Moreover, there are numerous RC candidates for a
given heat exchanger, and the exhaustive searching algorithm
is incompetent for searching the whole solution space. Taking a
24-tube heat exchanger as an example, there are about 3 × 1023

possible solutions. The exhaustive searching method may cost
at least 4.2 × 104 years even a 100 GHz CPU computer is ap-
plied. Therefore, suitable RC optimization method is needed.

Domanski, Kaufman, et al. [9,10] used domain knowledge-
based structure modifying operators and symbolic learning
method to optimize RC of a fin-and-tube evaporator, and re-
ported that the RC optimization program had the capability to
generate designs with capacity equal or superior to that of best
human designs. However the process of generating the rules for
symbolic learning in that method is quite complicated and the
generated rules may confine the diversity of the solutions be-
cause some tube connections are fixed during the optimization
process. Therefore, simpler optimization methods for RC opti-
mization of fin-and-tube heat exchangers are expected.

Genetic Algorithm (GA) is relatively easy to operate [11],
can find the global optimal solution [12] and provide good re-
sults for some combinatorial optimization problems [13–16].
But it cannot be directly applied for RC optimization due to the
complicated nature of RC optimization. In order be used in RC
optimization of fin-and-tube heat exchangers, traditional GA
need to be improved by overcoming the following 4 problems:
(1) How to represent the RCs. The RC representation method
should not only be easy for computer to distinguish different
RCs and perform genetic operations, but also be space saving
and easily decoded. (2) How to automatically generate the fea-
sible RCs. Not only feasible initial RCs but also new feasible
RCs in the optimization process should be automatically gen-
erated. (3) How to avoid the infeasible solutions generated by
the genetic operators. Infeasible solutions are easily produced
with the traditional genetic operators [9], and measures should
be taken to avoid the infeasible solutions. (4) How to develop
efficient genetic operators to improve the optimization speed.
Optimization process that takes too much time is unbearable
for practical applications, and more efficient genetic operators
must be developed.

In this paper, the method of solving the above 4 problems
are presented, and an improved genetic algorithm (IGA) for RC
optimization of heat exchangers is introduced. Case studies and
conclusions are offered in the last part of the paper.

2. Description of the RC optimization targets and
constraints

Two targets of the refrigerant circuit optimization are consid-
ered, one is to obtain the shortest tubes, and the other is to obtain
the maximum heat exchange capacity of the heat exchanger.
Tubes in a heat exchanger include the finned tubes in the main
body of the heat exchanger and the joint tubes. As the length
of the entire finned tubes is not changeable when the overall di-
mension of the heat exchanger is fixed, the objective of getting
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the shortest tubes is equivalent to obtaining the shortest joint
tubes. All the working conditions and the structural parameters
except the refrigerant circuit are fixed during the optimization.
Other parameters of the optimization problems are listed below:

(1) To obtain the shortest joint tubes:

min L(X), X is the variable of refrigerant circuit
that needs to be optimized

s.t. Q � Q0;Lb � Ladj;min = C1;mout = C2

where Q and Q0 are the heat exchange capacity related
to the X and the minimum value of the heat exchange ca-
pacities of all feasible RC solutions, respectively; Lb and
Ladj are the length of single joint tube on the backside of
the heat exchanger and the maximum length of single joint
tube between two adjacent tubes of same row or adjacent
rows, respectively; min and mout are the numbers of the in-
let paths and the outlet paths, respectively; C1 and C2 are
two constant numbers.

(2) To obtain the maximum heat transfer:

max Q(X),X is the variable of refrigerant circuits
that needs to be optimized

s.t. Lb � Ladj;min = C1;mout = C2

Refrigerant circuit controls the refrigerant distribution in the
paths. Unsuitable refrigerant distribution in evaporators may re-
sult in dry-out of circuits and finally result in poor heat transfer
and waste of the heat transfer area, while unsuitable refriger-
ant distribution in condensers may create zones of reduced heat
transfer due to high liquid loading. Moreover, unsuitable re-
frigerant distribution may lead to high temperature difference
between adjacent tubes, which causes the reversed heat conduc-
tion through the fins and degrades the performance of the heat
exchangers [3,17]. Changing the refrigerant circuit can help to
adjust the refrigerant distribution in the heat exchangers and to
obtain a suitable refrigerant distribution in a heat exchanger.
Therefore the maximum heat transfer can be expected for some
optimal RCs. On the other hand, the total length of joint tubes
may also be reduced if the minimum heat exchange capacity of
the heat exchanger is fixed.

3. Improved Genetic Algorithms (IGA) for RC
optimization

The standard GA (SGA) uses a population of individu-
als to perform the optimization. It contains 6 steps of cod-
ing/decoding, population initialization, evaluation, selection (or
reproduction), crossover and mutation. The individuals are rep-
resented with strings in a binary or decimal format, and the ini-
tial individuals are randomly generated from the search space.
Each individual is evaluated and assigned with a ‘fitness’ value
determined by the fitness function. The higher ‘fitness’ value an
individual has, the higher chance it would survive to the next
generation during the selection process. Some individuals in
the new generation are generated from individuals selected at
a given probability by using crossover and mutation operations.
Crossover operation generates new individuals by exchanging
the data between two randomly chosen individuals, and muta-
tion operation generates new individuals by randomly changing
data of one randomly chosen individual. The individuals in the
new generation are evaluated and the process is repeated until
the given maximum number of generations is reached or con-
vergence is reached.

When applying the GA into the domain of heat exchanger
refrigerant circuit optimization, not only the methods of above
6 operations should be improved, but also additional correction
operators should be developed in order to avoid the shrinking
of the searching space by completely abandoning all infeasible
solutions.

3.1. RC representation method

A suitable RC representation method should be able to de-
scribe most types of fin-and-tube heat exchangers. As heat ex-
changers with both inner divergences and inner confluences are
rarely used in air conditioners, only the following three types
of heat exchangers are needed to describe: (1) with inner di-
vergences; (2) with inner confluence; (3) neither with inner
divergences nor with inner confluences. Figs. 1(a) and (b) show
the schematic of the RCs for i-column and j -row heat exchang-
ers with inner divergence and inner confluence, respectively. In
Fig. 1, the solid lines represent the return bends on the near side
of the heat exchanger, and the broken lines are the return bends
on the far side. The arrows on the solid lines reflect the direc-
tion of the refrigerant flow in the bends. In order to identify
each tube in the heat exchanger, the tubes are numbered from 1
to N from front row to back row and from bottom to top of the
heat exchanger, and the inlet collecting tube and outlet collect-
ing tube are numbered as 0 and N + 1 respectively.

The RC representation method applied in GA should also
satisfy the following 2 requirements: (a) the representation
codes for RC can be easily decoded to the form used by the RC
evaluation software and can be easily manipulated by the ge-
netic operators; (b) The RC representation codes can save both
computer memory and decoding time because large number of
RC solutions are manipulated simultaneously in GA.

A method with two-dimensional adjacent matrix to describe
the RC of a fin-and-tube heat exchanger is developed for steady-
state simulation, in which only single RC needs to be described
and only single two-dimensional adjacent matrix needs to be
stored [6]. But the number of the RCs stored in the optimiza-
tion process is very large and it may cost too much storing space
and decoding time if the two-dimensional adjacent matrix is
used to describe the RC. Take one RC containing N tubes as
an example, the adjacent matrix is an integer matrix of at least
(N +2)×(N +2) elements and needs at least (N +2)×(N +2)

times of searching operation in order to trace the refrigerant
flow according to the adjacent matrix. The storing space and
decoding time may increase rapidly when the number of RC in-
creases. Furthermore, it is difficult to manipulate the adjacent
matrix by using genetic operators because little modification of
the adjacent matrix may lead to infeasible tube connections in
the RC. Thus, the adjacent matrix is not suitable for represent-
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Fig. 1. Schematic of the RCs for i-column and j -row heat exchanger.
ing the RC in the GA, and a new RC representation method
should be developed.

In this paper, a one-dimensional integer string is developed,
as shown below, to represent the RC:

X = {x1, x2, . . . , xm, xm+1, xm+2, . . . , xm+N } (1)

where m is the inlet path number for heat exchangers without
inner divergences, or the outlet path for the heat exchanger with
inner divergences; x1, x2, . . . , xm+N are the array of the tube
no. For heat exchangers without inner divergence, the first m

integers of “x1, x2, . . . , xm” denote the no. of inlet tubes, and
the next N integers “xm+1, xm+2, . . . , xm+N ” denote the no.
of the tubes connecting to the end of tube #1, tube #2, . . .,
tube #N , respectively. For the heat exchanger with inner diver-
gences, the first m integers of “x1, x2, . . . , xm” denote the no.
of outlet tubes, the next N integers “xm+1, xm+2, . . . , xm+N ”
denote the no. of the tubes connecting to the head of tube
#1, tube #2, . . . , tube # N , respectively. Take the RC shown
in Fig. 1(a) as an example, x1 = ij + 1, . . . , xm = N,xm+1 =
N + 1, xm+2 = 1, xm+3 = 2, . . . , xm+i = i − 1, . . . , xm+N−1 =
N − 2, xm+N = N − 1. Thus a string can uniquely represent a
RC of a heat exchanger with or without inner divergences.

The above RC representation method with one-dimensional
integer string has 2 advantages. The first advantage is that the
refrigerant-flow-trace can be simply and clearly described. For
the heat exchangers without inner divergences, the tube con-
nection of the RC can be obtained from X as: #0 → #x1,#0 →
#x2, . . . ,#0 → #xm,#1 → #xm+1,#2 → #xm+2, . . . ,#N →
#xm+N . For the heat exchangers with inner divergences, the
tube connection of the RC can be obtained from X as: # x1 →
#(N + 1),#x2 → #(N + 1), . . . ,#xm → #(N + 1),#xm+1 →
#1,#xm+2 → #2, . . . ,#xm+N → #N . When xm+i = xm+j

(i, j = 1,2, . . . ,N and i �= j ), the tube #xm+i is the conflu-
ence tube of tube #i and tube #j for the heat exchanger without
inner divergences, or is the divergence tube of tube #i and tube
#j for the heat exchanger with inner divergences. The second
advantage is that it can save both computer memory and de-
coding time. The integer string only needs (N + m) integer
memory space to describe the RCs of a heat exchanger with N

tubes, which can save much computer memory comparing with
the (N + 2) × (N + 2) integer memory space used in the two-
dimensional adjacent matrix [6]. It only needs (N + m) times
of searches for decoding the string, which is faster than the
two-dimensional adjacent matrix [6] using (N + 2) × (N + 2)

times.

3.2. RC generation method

RC solutions should be automatically generated in GA espe-
cially during the population initialization stage, and the existing
method of randomly generating RC solutions cannot meet the
requirement, therefore a new method must be developed. Ran-
domly generating RC solutions can be used to generate the RC
with only one inlet and one outlet, but it cannot be used to gen-
erate the RC with multiple inlets and outlets because infeasible
solutions may easily be generated. The reason of easily gener-
ating infeasible solutions for the RC with multiple inlets and
outlets is that the specific tube connection constraints for the
different kinds of tubes are not complied during the random RC
generation process. The tubes in RC with multiple inlets and
outlets can be generally divided into 4 kinds of common tubes,
inlet tubes, outlet tubes, and inner confluence or divergence
tubes. The tube connections in the practical RC must comply
with the following constraints: (1) A common tube should have
only one inlet and one outlet; (2) An inlet tube must begin with
tube #0 and end with one common tube; (3) All the refrigerant
must confluent to same end of the confluence tube, or diverge
from same end of the divergence tube; (4) One tube should not
appear in one path more than one time to avoid the refriger-
ant flow loop in the RC. Infeasible solutions may occur if the
above constraints are not correctly considered during the RC
generation process. Therefore, the computer should be guided
to consider these constraints in order to automatically generate
feasible solutions.
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A novel RC generation method is developed to guide the
computer to distinguish different kinds of tubes and to search
the valid adjacent tubes for them. The novel method ran-
domly determines the inlet tubes, outlet tubes and conflu-
ence/divergence tubes in sequences at first, then randomly se-
lects the valid foreside tube for those without foreside tube until
all the tubes are included in the RC. As the inlet tubes, outlet
tubes, confluence/divergence tubes and the adjacent tubes have
already been correctly determined, the possibility of infeasible
solutions is greatly reduced. The random operation in each step
can guarantee the diversity of the generated RCs.

The method for generating the RC without inner divergences
is shown in the following steps 1–4. The undetermined parts in
X are abbreviated as *** in order to clearly show the variation
of X during the RC generation process:

(1) Randomly determine the inlet tubes: X = {x1, x2, . . . , xm,

∗ ∗ ∗}.
(2) Randomly determine the outlet tubes: X = {x1, x2, . . . , xm,

∗ ∗ ∗,N + 1,∗ ∗ ∗,N + 1,∗ ∗ ∗}.
(3) Randomly determine the confluence tubes: X = {x1, x2,

. . . , xm,∗ ∗ ∗,N + 1,∗ ∗ ∗, xm+i ,∗ ∗ ∗,N + 1,∗ ∗ ∗, xm+j ,

∗ ∗ ∗} (xm+i = xm+j , i, j = 1,2, . . . ,N and i �= j . So the
tube #i and tube #j converge to tube # xm+i ).

(4) Select the valid foreside tube for those tubes without fore-
side tube:

X = {x1, x2, . . . , xm, xm+1, . . . ,N + 1, . . . ,

xm+i , . . . ,N + 1, . . . , xm+j , . . . , xm+N }

The method for generating the RC with inner divergences can
be obtained by replacing “N +1” with “0”, replacing “foreside”
with “rear-side”, and replacing “confluence” with “divergence”
in the method for generating the RC without inner divergences.
Step 3 can be skipped if the number of the inner conflu-
ence/divergence is set as 0.

Neighbor-tube-database for each tube is created at the be-
ginning of the optimization process to generate better solutions.
For the convenience of manufacture and for the target of obtain-
ing the shortest joint tubes, each tube should be connected with
its nearest neighbor tube. Creating neighbor-tube-database for
each tube at the beginning of the optimization process can help
to limit the length of the joint tubes. The adjacent tubes of each
tube have priority to be selected during the process of randomly
selecting foreside tube for those tubes without foreside tube.

3.3. Method to avoid the infeasible solutions generated in the
genetic optimization process

Infeasible solutions may be produced in the genetic opti-
mization process. The existing penalty method [18] does not
avoid all the infeasible solutions, so such method is not suit-
able for treating with the infeasible solutions in RC genetic
optimization process because one infeasible solution is enough
to break the optimization program. However, the optimal so-
lutions may be lost if we completely reject all the infeasible
solutions because infeasible solutions may still contain better
genes. Therefore, a better solution to avoid the infeasible solu-
tions in GA is to modify and correct the infeasible solutions.

In this paper, five correction operators are developed to
check and correct the infeasible solutions: (1) Judge and cor-
rect the sub-loop. The sub-loop is broken in suitable position
and added to the shortest path. (2) Judge and correct the num-
ber of inlets and outlets. Rest numbers of tubes are randomly
set as the inlet/outlet tube if the number of the inlets/outlets is
less than the expected value, and rest numbers of inlet/outlet
tubes are randomly inserted to the end of the shortest path if the
number of the inlets/outlets is larger than the expected value.
(3) Judge and correct the positions of the inlet tubes and outlet
tubes. The positions of the inlet tubes and outlet tubes should
not be in the middle of one path, and the path is broken before
the position of inlet/outlet tube if it contains inlet/outlet tubes.
(4) Judge and correct the refrigerant flow direction at diver-
gence/confluence points. The divergence/confluence position
on one path is moved even number of tube positions forward
or backward to avoid this problem. (5) Judge and correct con-
nection of the return bends according to the constraints. The RC
is modified to satisfy the constraints for tube connections.

The traditional genetic operators can be used for RC opti-
mization after applying the developed RC correction operators
for avoiding the infeasible solutions. But effective genetic op-
erators for RC optimization are still needed in order to obtain
efficient RC optimization method due to the low efficiency of
the traditional genetic operators for RC optimization.

3.4. Effective genetic operators for RC optimization

The traditional genetic method uses pure random genetic op-
erations. With the pure random genetic operators, the worse
solutions and better solutions have the same probability to be
generated, the worse solutions may pullback the optimization
progress, and so the optimization speed is slow. In order to
speed up the optimization process, more effective crossover
method, mutation method and selection method are needed.

3.5. Greedy crossover

The optimization speed may increase if better solutions are
always generated during the crossover process. The greedy
crossover method [19] can always generate better offspring so-
lutions by greedily inheriting the better genes from the two
selected parent individuals, but some tailor-made improvements
are needed for generating feasible RC offspring solutions. The
tube connections in RC have strict constraints, and must be
complied during the crossover process in order to generate a
feasible offspring individual. No available crossover method
considers such constraints. Thus, specific RC crossover method
is needed to generate better and feasible offspring individual
from the two selected parent individuals.

The greedy crossover method is first applied to inherit the
better tube connections from the parent individuals, and then
RC generation method, which considers the tube connection
constraints in practical RC, is used to uniformly generate the
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Fig. 2. Schematic of the greedy crossover method for RC optimization.
remaining tube connections in the offspring individual. Sup-
pose the two selected parent individuals and their offspring are
PA, PB and OA, respectively. In order to inherit the informa-
tion of the inlet positions of the parent individuals, the greedy
crossover operator alternately selects the inlet tubes of PA and
PB as the inlet tubes of OA at first. Then, it greedily searches
the rear-side tube starting from each inlet tube of OA until in-
feasible connections occur. More specifically, it starts with the
inlet tube t of the 1st path of OA, and then checks whether same
rear-side tube of t is used in both parent RCs. If so, the common
rear-side tube is chosen. Otherwise, it compares t’s rear-side
joint tube length in each of the parents. For the goal of obtain-
ing the shortest joint tubes, the shorter one is chosen unless an
infeasible connection is introduced, in which case the longer
one is chosen. If the longer one would also introduce an infea-
sible connection, set the rear-side tube of t as tube #(N + 1).
For the goal of obtaining the maximum heat transfer, one tube is
randomly chosen unless an infeasible connection is introduced,
in which case the other one is chosen. If the both tubes would
also introduce an infeasible connection, set the right tube of t

as tube #(N + 1). Same steps performed on the 1st path are
repeated on other paths, until all the paths are ended with the
tube #(N + 1). And then, it uniformly determines the foreside
tube for those tubes without foreside tube until all tubes are
connected into the RC. The benefit of our method is that the off-
spring has the priority to greedily inherit better genes from the
two parent individuals, as well as the freedom to select other
connections when there are no feasible connections that can
be inherited from the parent individuals. Fig. 2 schematically
shows the greedy crossover method for PA and PB.

3.5.1. Greedy mutation
The pure random RC mutation method easily generates in-

feasible tube connections as well as worse solutions. Too much
time is cost for correcting the numerous infeasible tube connec-
tions in order to obtain a feasible RC solution, and the worse
solutions may slow down the optimization progress. Therefore,
new RC mutation methods are needed in order to reduce the
optimization time.

The authors develop a greedy mutation method originally
for RC optimization. The method divides the RC into several
paths according to its tube connection topology at first, and
then it randomly selects one path and randomly changes the
tube connection order in the single path. This mutation method
can greatly reduce the probability of generating infeasible so-
lutions because the tube connection order is randomly changed
only in one single path. As there is no iteration in calculating
the total length of joint tubes of a fin-and-tube heat exchanger,
the time for calculating the total length of joint tubes of a given
RC is far less than that for calculating the heat exchange capac-
ity. Therefore, for the goal of obtaining the shortest joint tubes,
the computer calculates the total length of joint tubes of the RC
after changing the tube connection order. If the new RC has
shorter joint tubes, it replaces the original one and the mutation
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Fig. 3. Schematic of the greedy mutation method for RC optimization.

Fig. 4. Schematic of the mechanics of the selection method of CPSM and APPSM.
process ceases, otherwise the operation of randomly changing
the tube connection order is repeated until a better solution
is generated or the maximum number of repeat operations is
reached. For the goal of obtaining the maximum heat transfer,
this greedy mutation method can still be used, but the maxi-
mum number of repeat operations should not be very large in
order to avoid a too long optimization time. Fig. 3 schematically
shows the process of the greedy mutation operation for one se-
lected RC solution. With this mutation method, the positions of
inlet/outlet tubes and inner confluence/divergence tubes could
also be changed, so it has the ability to enlarge the solution-
search-space and to increase the possibility of finding the global
optimal solution.

3.5.2. All-previous-population based selection
The selection method that can select both high diversity and

high quality individuals for next generation may push forward
the genetic process. But the existing current-population-based
selection method (CPSM) has the drawback of losing better
solutions during the genetic process. In fact, many individu-
als that may contain some useful genes are generated but not
survived in the current population during the genetic process
with CPSM. If these genes are considered during the selection
of next generation population, the solution space may be ex-
tended and the efficiency of the optimization process may be
improved.

An all-previous-population based selection method
(APPSM) is developed in order to improve the diversity and
quality of the individuals in the population of next generation.
This selection method gives equal chances to all the individu-
als in all previous populations to be selected as the individuals
of next generation. Therefore, it has higher possibility to se-
lect high-diversity and high-quality individuals. Figs. 4(a) and
(b) schematically show the mechanics of the existing CPSM
and our APPSM. The drawback of the APPSM compared with
CPSM is that it costs more inner memory for storing the solu-
tions. But it will not affect the running of the program because
no more than 1 MB inner memories are needed after using one-
dimensional integer string to represent the RC.
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3.6. Fitness functions for RC optimization

Every solution in the population should be evaluated during
the genetic optimization process. A fitness function is needed
to rank the fitness value of each individual for selecting indi-
viduals to next generation. In order to effectively evaluate the
solutions and guide the optimization process, different fitness
functions are designed for different kind of optimization tar-
gets.

3.6.1. Fitness function for the goal of obtaining the shortest
joint tubes

Eq. (2) is used as the fitness function for obtaining the short-
est joint tubes:

F(j) = δ
L

Lr

+ (1 − δ)
Q0

Q
(2)

where F(j) is the fitness value of the No. j solution in the pop-
ulation; L is the total length of joint tubes of the No. j solution
in the population; Lr is the reference value of the total length
of joint tubes, and can be set as the shortest total length of joint
tubes of the solutions in the first generation; δ is the weight fac-
tor for balancing the effect of the total length of joint tubes and
the heat exchange capacity of the solutions. Generally, δ is set
as 0.6–0.9.

3.6.2. Fitness function for the goal of obtaining the maximum
heat transfer

Eq. (3) is used as the fitness function for obtaining the max-
imum heat exchange capacity:

F(j) = 1.0/Q (3)

3.7. Flow chart of the IGA for RC optimization

An improved genetic algorithm (IGA) for RC optimization
is developed by organizing the above developed RC representa-
tion method, RC generation method, greedy crossover method,
greedy mutation method, selection method and RC correction
method together. In order to absolutely avoid the infeasible so-
lutions to guarantee the stability of the optimization program,
the correction operators are applied to check and correct the so-
lutions after each genetic operation in the IGA. Fig. 5 shows the
flow chart of the IGA. In order to show the difference between
the IGA and the SGA, the added and improved parts in the IGA
compared with those in the SGA are highlighted with different
background in Fig. 5.

4. Case study and discussion

It is better to make comparisons for each improvement of the
IGA and the SGA in order to verify the IGA. In the IGA, the RC
representation method, RC initialization method, RC correc-
tion method, crossover method, mutation method and selection
method are developed or improved comparing with those in the
SGA. The RC representation method, RC initialization method
and RC correction method are originally developed in the IGA,
Fig. 5. Flow chart of the IGA for RC optimization.

and the simple GA may not be workable for RC optimization
if the three methods are not applied. Therefore, the effect of
the RC representation method, RC initialization method and
RC correction method can be verified only if the IGA can per-
form a RC optimization smoothly. In order to verify the IGA
behaviors with respect to the variation of external parameters
of the heat exchanger, three test cases including evaporator and
condensers with different scales are used to perform series of
tests. The structural parameter and work conditions of the 3
test cases are shown in Table 1. In order to verify the effect
of the greedy crossover method, greedy mutation method and
APPSM selection method developed in the IGA, each test case
is optimized with the following 3 methods: (1) the SGA only
using pure random crossover, pure random mutation method
and the proposed RC correction method, (2) the IGA with
CPSM selection method and (3) the IGA with APPSM selec-
tion method.

The following parameters of GA are used in the tests: the
population size is 10; the maximum generation number is 300;
the crossover probability is 0.6; the mutation probability is 0.85;
the selection model is Rank-based Model [16]; no specific ini-
tial RC solutions are given at the outset of the optimization; the
convergence criterion is that the generation number reaches to
the maximum value. The heat exchange capacity of RC solution
is evaluated by using the improved heat exchanger simulation
software based on Ref. [6], which can predict the heat trans-
fer and pressure drop characteristics of heat exchangers using
R410A with the deviations less than ±5% and ±15% respec-
tively. The heat transfer model from Ref. [6] is summarized in
Appendix A.
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Table 1
Structural parameters and work conditions of the test cases

Structural parameters Case l Case 2 Case 3

Length/Width/Height (mm) 900/726.6/7266 900/739.9/7266 900/736.4/7630
Row number/Tube number per row 2/12 3/12 2/30
Row pitch/Tube pitch (mm) 13.3/21 13.3/21 18.2/21
Bottom boundary space of each row (mm) 5.25, 15.75, 5.25
Inlet path number/Outlet path number 4/2 4/2 4/4
Tube diameter, mm/Type 7.0/Enhanced
Fin pitch, mm/Fin type 1.37/Slit 1.37/Slit 1.457/Wavy
Total length of joint tubes for practical designs before optimization (mm) 501 1117 1176

Work conditions

Refrigerant type R410A R410A R410A
Refrigerant condensation temperature (◦C) 50 50 2.05
Refrigerant inlet superheat (◦C) 11 11 –
Refrigerant inlet mass quality – – 0.232
Mean flow rate (g s−1) 22.14 22.14 28.54
Air inlet temperature Tdb/Twb (◦C) 35/24 35/24 7/6
Air velocity (m s−1) 1.5 1.5 1.58
Minimum heat exchange capacity (W) 3500 × 0.95 3840 × 0.95 4870 × 0.95
Fig. 6. Variation of the total length of joint tubes of the best individual in each generation for obtaining the shortest joint tubes.
4.1. Test results for the goal of obtaining the shortest joint
tubes

Figs. 6(a)–(c) show the variation of the total length of joint
tubes of the best individual in each generation during the opti-
mization process for obtaining the shortest joint tubes for each
case, respectively. It shows that (1) for all the test cases with
different scales, both the optimization speeds and the optimal
results of the IGA with APPSM and the IGA with CPSM are
much better than those of the SGA; (2) both the optimization
speeds and the optimal results of the IGA with APPSM are bet-
ter than those of the IGA with CPSM.

The higher efficiency of the IGA comparing with that of
the SGA is due to the use of the greedy crossover operator
and greedy mutation operator in the IGA. In the SGA, only
pure random crossover operation and mutation operation are
applied, the new solutions generated by such operations may
be worse than their ancestors, and there is no progress in the
SGA if worse offspring are always generated. While in the
IGA, greedy crossover operator and greedy mutation operator
are applied, which can generate better offspring with higher
probability and give an enhanced power to push forward the
optimization process. Both the optimization speed and the op-
timal results of the IGA with APPSM are better than those of
the IGA with CPSM because the APPSM gives equal chances
to all the individuals in all previous populations to be selected
as the individuals of next generation. Thus, it has higher pos-
sibility to select high-diversity and high-quality individuals for
next generation, which improves the efficiency of the genetic
process.

Figs. 7(a)–(c) show the variation of the heat exchange capac-
ity of the best individual in each generation during the optimiza-
tion process for obtaining the shortest joint tubes for Cases 1–3,
respectively. The test results show that, with each optimization
method, the heat exchange capacity of the best individual in
each generation increases or decreases during the optimization
process, even the total length of joint tubes always decreases
during the optimization process. It is consistent with the fact
that, under some working conditions, the heat exchange capac-
ity of the heat exchanger is not proportional to the total length
of the joint tubes because the RC pattern has more powerful ef-
fect on the heat transfer performance. The variations shown in
Figs. 6 and 7 also denote that a RC with shorter joint tubes may
still have the ability to obtain higher heat exchange if the RC is
well designed.

For the target of obtaining the shortest joint tubes, the mean
value of the total length of joint tubes of all the individuals
in each generation represents the quality of the population.
Figs. 8(a)–(c) show the variations of the mean value of the
total length of joint tubes of the individuals in each genera-
tion for Cases 1–3, respectively. It shows that, for each case,
(1) the IGA with APPSM provides the lowest mean value of
the total length of joint tubes in each generation; (2) the mean
value of the total length of joint tubes in each generation of
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Fig. 7. Variation of the heat exchange capacity of the best individual in each generation for obtaining the shortest joint tubes.

Fig. 8. Variation of the mean total length of joint tubes of all individuals in each generation for obtaining the shortest joint tubes.
the IGA with APPSM varies more frequently than those of the
SGA and the IGA with CPSM. These test results prove that
the IGA with APPSM has higher ability to change the diversity
and quality of the individuals in each generation, which greatly
contributes to the higher optimization ability of the IGA with
APPSM.

Figs. 9(a)–(c) show the optimal solutions obtained by the
IGA with APPSM for obtaining the shortest joint tubes for
Cases 1–3, respectively. It can be found that (1) most of the con-
nections are placed between adjacent tubes in order to shorten
the total joint tube length; (2) all the connections on the far
side of the heat exchanger are between adjacent tubes which
make it be possible for the manufacturers to insert the hair-
pins from the far side of the heat exchanger to improve the
efficiency of manufacturing the heat exchangers; (3) the refrig-
erant outlets are located in the front row and far away from the
inlets, which contributes to higher heat exchange capacity. The
calculation results show that the heat exchange capacity of the
optimal RCs for Cases 1–3 are 3532 W, 3827 W and 4901 W,
respectively, which satisfy their minimum requirements on heat
exchange capacity. The total length of joint tubes of the optimal
RCs for Cases 1–3 are 410.3 mm, 666.1 mm and 1176.0 mm,
which are 26.60%, 24.4% and 46.3% shorter than the initial
ones during the optimization, and are 18.1%, 40.3% and 0%
shorter than those of the practical designs before optimization
as shown in Table 1. A 0% decrease in Case 3 comparing with
the practical designs before optimization is mainly because the
practical designs before optimization are also the best human
designs. The test results denote that the IGA is suitable for heat
exchanges with different scales and has the ability to automat-
ically provide RC solutions equal or superior to those designed
by human.
Fig. 9. Optimal solutions obtained by the IGA with APPSM for obtaining the
shortest joint tubes.

4.2. Test results for the goal of obtaining the maximum heat
transfer

Figs. 10(a)–(c) show the variation of the heat exchange ca-
pacity of the best individual in each generation during the op-
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Fig. 10. Variation of the heat exchange capacity of the best individual in each generation for obtaining the maximum heat transfer.

Fig. 11. Optimal solutions obtained by the IGA with APPSM for obtaining the maximum heat transfer.
timization process for obtaining the maximum heat transfer by
using the SGA, the IGA with APPSM and the IGA with CPSM
for Cases 1–3, respectively. It shows that the heat exchange ca-
pacity of the best individual in each generation increases during
the optimization process. For each case, both the optimization
speeds and the optimal results of the IGA with APPSM and the
IGA with CPSM are better than those of the SGA. However, the
improvement degree of the obtained maximum heat exchange
capacity with different optimization methods is not very large.
This is mainly because the crossover operation in the IGA for
the target of obtaining the maximum heat transfer is random
operation, and the impulse of obtaining higher efficiency of the
IGA mainly depends on the greedy mutation operation. There-
fore, more powerful genetic operators are needed for the target
of obtaining the maximum heat transfer.
Figs. 11(a)–(c) show the optimal solutions obtained by the
IGA with APPSM for obtaining the maximum heat transfer
for Cases 1–3, respectively. It can be found that (1) almost all
the refrigerant outlets locate on the front row, which enhances
heat transfer between air and refrigerant in the outlet tubes by
increasing the temperature difference between the two fluids;
(2) almost all the refrigerant outlets and inlets are far away from
each other, which can reduce the heat conduction loss via the
continuous fin between the refrigerant inlets and outlets, there-
fore the heat exchange capacity can be increased; (3) all the
connections on the far side of the heat exchanger are between
adjacent tubes which make it be possible for the manufacturers
to insert the hairpins from the far side of the heat exchanger to
improve the efficiency of manufacturing; (4) some connections
on the near side of the heat exchanger span over several tubes,
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which can help to adjust the air flow exposed on each path by
selecting suitable tubes to the path in order to obtain identi-
cal refrigerant state at the outlet of each path. It looks difficult
to manufacture some connections spanning over tubes at first
glance, but it is feasible and may not increase much cost for the
manufacturers to realize these connections since all tubes are
already located in the heat exchanger by inserting hairpins to
the heat exchanger from it far side. The test results show that
the heat exchange capacity of the optimal RCs for Cases 1–3
are 3759 W, 3984 W and 4941 W, which are 7.4%, 3.8% and
2.8% higher than those practical designs before optimization,
respectively. It also shows that the improvement degree of the
heat exchange capacity in the optimal solutions decreases when
the scale of the heat exchangers increases. The main reason
for this phenomenon is that the number of possible solutions
increases rapidly with the increase of the scale of the heat ex-
changers, which may decrease the chance to find the optimal
solutions within same number of search times. Increasing the
search times or developing more powerful genetic operators is
possible way to overcome this problem.

The optimization time depends on the population size, total
generation number and the time to evaluate each individual of
the test case during the optimization process. It takes about 11 s,
16 s, and 14 s to evaluate one individual of Cases 1–3 on a
computer with Pentium (R) CPU 2.66 GHz and 1 GB RAM,
respectively. The test results show that the optimization time
of each test case with the methods of the SGA, the IGA with
CPSM and the IGA with APPSM are almost the same and less
than 15 h, which can satisfy the requirements of the practical
engineers to start the optimization before leaving the office for
home on one day and to obtain the optimization results on next
morning.

5. Conclusions

This paper presents a novel approach for optimizing the RC
of fin-and-tube heat exchangers based on the genetic algorithm.
The new RC representation method is developed and can save
both computer memory and decoding time. RC correction oper-
ators are used to absolutely avoid the infeasible solutions with-
out shrinking the searching space. New RC generation method,
greedy crossover method, greedy mutation method and APPSM
selection method are used to improve the efficiency of the RC
optimization process.

Serial tests are performed on three test cases with different
scales for obtaining the shortest joint tubes and for obtaining
the maximum heat transfer, respectively. The following conclu-
sions can be obtained according to the test results: (1) the GA
is suitable for optimizing the refrigerant circuit of fin-and-tube
heat exchanger with the developed RC representation method,
RC initialization method and RC correction method; (2) the im-
proved greedy crossover method and greedy mutation method
have higher efficiency than the traditional genetic operators for
RC optimization; (3) the selection method based on all previ-
ous populations is better than the selection method only based
on current population in the genetic process; (4) the IGA has the
ability to automatically provide RC solutions equal or superior
to those designed by human.

This approach extends the GA application range to the RC
optimization of fin-and-tube heat exchangers, and introduces a
simpler and more effective method for practical RC optimiza-
tion. The developed selection method based on all previous
populations can contribute to improve the efficiency of the op-
timization process using GA. Further studies are still needed to
develop more effective genetic operators to improve the opti-
mization efficiency for obtaining maximum heat transfer. Ap-
plying heat transfer theories to guide the crossover or mutation
operation may be a promising way to develop higher efficient
IGA for obtaining maximum heat transfer.

Appendix A

The refrigerant flow inside the tube is considered as one-
dimensional axial flow and the axial conduction along the tubes
is neglected.

Energy conservation equation for refrigerant flow in tubes:

Q1r = Q2r (A.1)

where

Q1r = Mr(hr,in − hr,out) (A.2)

Q2r = αrAi

(
Tr,in + Tr,out

2
− Twall

)
(A.3)

here αr is calculated from selected empirical correlations.
Continuity equation for refrigerant flow in tubes:

Gr,out = Gr,in (A.4)

Momentum conservation equation for refrigerant flow in tubes:

�pr,tube = �pr,f + �pr,acc (A.5)

where �pr,f and �pr,acc are calculated from selected empirical
correlations.

Energy conservation equation for air:

Q1a = Q2a (A.6)

where

Q1a = Ma · (ha,in − ha,out) (A.7)

Q2a = αaAoηo

(
Ta,in + Ta,out

2
− Twall

)
(A.8)

here air mass flow rate Ma is calculated based on upstream
control volumes in front row; αa is calculated from selected em-
pirical correlations.

Continuity equation for air:

Ga,out = Ga,in (A.9)

Momentum conservation equation for air:

�pa = �pa,fin + �pa,tube (A.10)

where �pa,fin is the airside pressure drop due to the fin surface;
�pa,tube is the airside pressure drop due to the tube surface.

The energy conservation equation for fin-and-tube:
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Q1r + Q1a + Qcond = 0 (A.11)

Qcond = Qfront + Qback + Qtop + Qbottom (A.12)

where Qcond is the total heat conduction by fins; Qfront, Qback,
Qtop, and Qbottom are heat conductions by fins from nearest
front row, back row, upper column, and bottom column, respec-
tively.

For coil with divergence or confluence, the governing equa-
tions at the divergence or confluence points are needed in order
to determine the inlet state parameters of refrigerant in down-
stream branches. Eqs. (A.13)–(A.15) are used for No. i diver-
gence flow.

Mr,in =
∑

Mr,ij (j = 1,2, . . . ,m) (A.13)

hr,in = hr,ij (j = 1,2, . . . ,m) (A.14)

pr,in = pr,ij (j = 1,2, . . . ,m) (A.15)

where Mr,in, hr,in and pr,in are the mass flow rate, specific en-
thalpy and pressure of refrigerant at the inlet of the of No.‘i’
divergence, respectively; Mr,ij , hr,ij and pr,ij are the mass flow
rate, inlet specific enthalpy and inlet pressure of refrigerant in
No. “j” branch of No.‘i’ divergence, respectively.

The following equations are used for No. i confluence flows:

Mr,i =
m∑

j=1

Mr,ij (j = 1,2, . . . ,m) (A.16)

hr,i =
∑m

j=1 hr,ijMr,ij∑m
j=1 Mr,ij

(j = 1,2, . . . ,m) (A.17)

pr,i = pr,ij (j = 1,2, . . . ,m), (A.18)

where Mr,i , hr,i and pr,i are the mass flow rate, specific en-
thalpy and pressure of refrigerant at the point after the of No.‘i’
confluence; Mr,ij , hr,ij and pr,ij are the mass flow rate, inlet
specific enthalpy and inlet pressure of refrigerant in the No. ‘j ’
subpath of No.‘i’ confluence.
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